We can compute invariants of moduli

stacks using geometric constructions,

corresponding to related moduli problems.

Computing motives of stacks of sheaves on stacky curves Lisanne Taams

Sheaves on stacky curves

A stacky curve is a DM-stack that is a curve and generically a scheme. This simple definition has many interesting consequences.

- Stacky curves are iterated root stacks.
- A vector bundle on a stacky curve is equivalent to a (quasi-)parabolic bundle.
- A torsion sheaf is equivalent to a nilpotent quiver representation of a cyclic quiver.
- A coherent sheaf on a stacky curve has a *rank* and a *degree vector* related to both the parabolic flag type and the dimension vector of the quiver

We can stratify by torsion type to reduce to torsion sheaves and vector bundles.

 $\operatorname{Coh}_{n,\underline{d}}(\mathcal{C}) = \coprod_{\underline{c} \ge 0} \operatorname{Coh}_{n,\underline{d}}^{\operatorname{tor} = \underline{c}}(\mathcal{C})$

 $\operatorname{Coh}_{n,\underline{d}}^{\operatorname{tor}=\underline{c}}(\mathcal{C}) \to \operatorname{Coh}_{0,\underline{c}}(\mathcal{C}) \times \operatorname{Bun}_{n,\underline{d}}(\mathcal{C})$

The stack of vector bundles as a fibration. $\operatorname{Bun}_{n,\underline{d}}\left(\sqrt[e]{p/C}\right) \xrightarrow{\sim} \operatorname{Flag}_{\underline{d'}}(p^*\mathcal{E}_{univ})$

 $\operatorname{Bun}_{n,d_0}(C)$

Untwist the stack of torsion sheaves by

considering the stack of filtered torsion sheaves.

 $\underline{d} = a \cdot \underline{1} + \underline{b}, \text{ with } \underline{b} \ge 0 \text{ minimal.}$ $\widetilde{\text{Coh}}_{0,\underline{d}}(\mathcal{C}) \longrightarrow \text{Coh}_{0,\underline{b}}(\mathcal{C}) \times \prod_{i=1}^{a} \text{Coh}_{0,\underline{1}}(\mathcal{C})$ $\downarrow \approx S_{a}$ $\text{Coh}_{0,\underline{d}}(\mathcal{C})$

The corresponding motivic formula. $M(\operatorname{Coh}_{0,\underline{d}}(\mathcal{C})) = M(B\operatorname{GL}_{\underline{b}}) \otimes \operatorname{Sym}^{a} M(\operatorname{Coh}_{0,\underline{1}}(\mathcal{C}))$

representation.

Main Theorem

The motive of the stack of coherent sheaves $Coh_{n,\underline{d}}(\mathcal{C})$ of rank n and degree vector \underline{d} on a stacky curve \mathcal{C} is *pure* and generated by the motive of the curve.

Motives

There are many tools to compute motives.

- Let $V_0 \rightarrow V_1$ be vector bundles on X, then $M([V_1/V_0]) = M(X)$.
- Let $X \to Y$ be a cellular fibration with fiber F,
- then $M(X) = M(Y) \otimes M(F)$.
- Let $Z \hookrightarrow X$ be smooth closed open pair s.t. Z and U are pure, then $M(X) = M(Z)\{c\} \oplus M(U)$. Let $X \to Y$ be small, surjective and generically a

A torsion sheaf at a stacky point of order *e*. It has

degree $\underline{d} = (\dim V_0, \ldots, \dim V_{e-1}).$

Example: The torsion sheaf $\mathcal{O}_{\mathcal{C}}/\mathcal{O}_{\mathcal{C}}(p^{i/e})$.

The corresponding motivic formula. $M\left(\operatorname{Coh}_{0,\underline{1}}\left(\sqrt[e]{p/C}\right)\right) =$ $M(B\mathbb{G}_m) \otimes \left(M(C) \oplus \bigoplus_{i=1}^{e-1} M(B\mathbb{G}_m^i) \{1\}\right)$

