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Chapter 1

Fundamentals of Stacky Curves

In this chapter we will introduce and develop the basic theory of stacky curves. In the first
section we cover the local and global structure results for stacky curves, relating stacky
curves to classical curves. In the second section we start our analysis of coherent sheaves
on stacky curves and prove analogues of many of the classical results, like the existence
of a torsion filtration and a description of invertible sheaves. In the third section we
will develop an analogue of the theory of projective curves and give analogues of Serre-
duality, the Riemann-Roch theorem and the Riemann-Hurwitz theorem. We also discuss
Hilbert polynomials and stability. In the final section we will relate vector bundles on
stacky curves to parabolic vector bundles and compare the notions of stability on both
sides.

1.1 Structure results for stacky curves

In this section we will describe the basic geometry of stacky curves. The main results are
two structure results for stacky curves: a local structure result describing stacky curves as
finite quotients of classical curves and a global structure result describing stacky curves
as a classical curve together with finite data. The results in this chapter are certainly well-
known; however, they are often stated in such high generality that it might obfuscate the
simplicity of the case of curves. Consequently, we will restate these results in terms of
curves and use the fact that we are on a curve to give simplified proofs. What is new is
that we work over an arbitrary (potentially imperfect) base field. Because of this we will
have to work with regular curves rather then smooth curves.

Definition 1.1.1 A stacky curve is a regular separated finite type geometrically con-
nected Deligne-Mumford stack C of dimension 1 over a field k, such that there exists
a (non-empty) schemeX and an open immersionX → C.

The condition thatC contains an open subscheme excludes things like gerbes over curves
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1 Fundamentals of Stacky Curves

and ensures that C has only finitely many stacky points. We will only consider regular
stacky curves, which is why we include it in the definition. Note that by definition a curve
is just a stacky curve that happens to be a scheme. When we want to emphasize that a
curve is scheme we will call it a classical curve.

Definition 1.1.2 Let C be a stacky curve and p be a closed point of C. We say that p
is a stacky point if it has a non-trivial stabilizer groupGp := Isom(p, p). If the order
ofGp is invertible in k we say that p is a tame point. We say that C is tame if all of its
points are tame. We define the residual gerbe of p to be the unique reduced closed
substack supported on p and denote it by Gp.

Note that in our situation this definition is equivalent to the more general definition of
[19, Definition 06MU] via [19, Lemma 0H27].

The motivating example of a stacky curve is the following.

Example 1.1.3 LetC be a curve over a field k andG be a finite subgroup of Aut(C),
then the stack quotient [C/G] is a stacky curve. The stacky points of [C/G] cor-
respond to the orbits of G with non-trivial inertia. Let p be a fixed point of G and
denote byGs(p) andGi(p) the stabilizer group and inertia group respectively. Then
the residual gerbe GGp is isomorphic to [Spec

(
κ(p)Gs/Gi

)
/Gi].

In the next example we glue together two quotient curves to get a stacky curve that is not
itself a quotient of a curve (see Theorem 1.3.6 for a proof).

Definition 1.1.4 The football space F(p, q), with weights p, q ∈ N≥1, is given by
gluing the two stacky curves U0 = [A1

k/µp] and U1 = [A1
k/µq], where µp and µq

act by multiplication and the gluing map Spec
(
k[x, x−1]

)
' [A1

k − {0}/µp] →
[A1

k − {0}/µq] ' Spec
(
k[y, y−1]

)
is defined by y → x−1.

The football space F(1, 1) is simply P1
k and topologically F(p, q) is just P1

k where the
points 0 and ∞ are stacky with residual gerbes Bµp and Bµq respectively. Over the
complex numbers we can think of this as a sphere with two pointy sides, i.e. an American
football. When p and q are coprime, F(p, q) is isomorphic to the weighted projective
stack P(p, q) := [A2

k − {(0, 0)}/Gm], where Gm acts as λ · (x, y) = (λpx, λqy).
When gcd(p, q) = e > 1, there is a map P(p, q) → F(p, q), making P(p, q) into a
µe-gerbe over F(p, q).

Definition 1.1.5 Let C be a stacky curve. A coarse space morphism for C is a mor-
phism π : C → C to an algebraic space satisfying the following properties.

• Any morphism f : C → X to an algebraic space factors uniquely through π.
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1 Fundamentals of Stacky Curves

• The inducedmap |C(Ω)| → |C(Ω)| is a bijection for algebraically closed fields
Ω.

The algebraic spaceC is called the coarse space.

By the factorisation property, the coarse space morphism is unique if it exists. To mirror
the idea that the coarse space is a rough (coarse) approximation of the stacky curve we
will write stacky curves with calligraphic letters and their coarse spaces with the same
non-calligraphic letter. In the literature coarse spaces are sometimes called coarsemod-
uli spaces, in analogy with the concept of fine/coarse moduli spaces. Since stacky curves
are not (always) moduli spaces, we omit the word “moduli”.

To show the existence of coarse spaces we can apply the much more general Keel-Mori
theorem; See for example [6] for a proof.

Theorem 1.1.6 (Keel-Mori) LetX be an Artin stack that is locally of finite presentation
over a field k, with finite inertia stack I(X). Then there exists a coarse space mor-
phism π : X → X to an algebraic spaceX with the following additional properties.

(1) IfX is separated, then so isX .

(2) The coarse spaceX is locally of finite type over k.

(3) The map π is proper and quasi-finite.

(4) ForX ′ → X a flat map of algebraic spaces the pullback π′ : X×X X ′ → X ′ is
also a coarse space morphism.

Clearly stacky curves satisfy the conditions of the Keel-Mori Theorem, so they always have
a coarse space morphism. Using this fact we can give the local structure result for stacky
curves we alluded to before.

Theorem 1.1.7 (Local form of stacky curves) LetC be a stacky curve with coarse space
map π : C → C and p a closed point of C with stabilizer group Gp. Then there
exists an étale morphism V → C from a curve with p in its image and a (possibly
disconnected) curve U with an action ofGp such that C×C V ' [U/Gp].

Proof. The existence of the schemes V, U and the action byGp follows from the proof
of [2, Lemma 2.2.3]. The quotient U → [U/Gp] is finite and smooth, so U is finite and
smooth over C. It follows that U is regular separated and 1-dimensional over k, so it is
a curve. ⭔

We will use the following technical lemma to conclude that the coarse space of a stacky
curve is a curve.
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1 Fundamentals of Stacky Curves

Lemma 1.1.8 Let C be a stacky curve and π : C → C the coarse space morphism,
then

1. C is separated,

2. C is irreducible,

3. C is 1-dimensional over k,

4. C is regular over k (and a fortiori normal).

Proof. We prove the statements one by one.

1. This follows from Theorem 1.1.6 (1).

2. Since π is a homeomorphism this follows from the irreducibility of C.

3. By definition we have an open substackX → C that is a 1-dimensional scheme.
Now the coarse space ofX , which isX , is an open subspace of C . Since C con-
tains an open 1-dimensional scheme it is itself 1-dimensional.

4. By Theorem 1.1.7 we know there exists a surjective étale cover by a (disconnected)
curve f : V → C . It follows thatC is regular.

⭔

Theorem1.1.9 LetCbe a stacky curvewith coarse spaceC , thenC is a classical curve.

Proof. By [12, Theorem V.4.4], a normal, separated, irreducible algebraic space over a
field is a scheme in codimension 1. It follows from the lemma above thatC is a scheme
and hence a curve. ⭔

Ramification theory and root stacks

Wewill nowdevelop somebasic ramification theory for stacky curves. This is based on [9],
which gives a treatment for more general (smooth) DM-stacks. The goal is to understand
the ramification of the coarse space map and see how it characterises the curves.

Definition 1.1.10 Let f : C → D be a morphism of stacky curves. Let p ∈ C be a
closed point with image f(p) = q ∈ D. Take an étale cover by a scheme U → D

and then another étale cover by a scheme V → U ×D C. Then take a point v ∈ V
that maps to p and let u be its image in U . Then we define the ramification index
ep/q to be the ramification index ev/u of v over u.
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1 Fundamentals of Stacky Curves

Proposition 1.1.11 The definition above is independent of the chosen covers.

Proof. Fix U and chose two different V and V ′. Then V ×C×D×U V
′ is also étale over

C×D×U , so we may assume there is an étale morphism V ′ → V commuting with the
map toC×DU . Letu, v, v′ be such that v′ 7→ v 7→ u, then ev′/u = ev′/vev/u = ev/u.
Now pick two pairs of étale covers U, V and U ′, V ′. Since U ×D U

′ is étale overD we
may assume that there is an étale morphismU ′ → U . By the first point we may replace
V ′ by V ×D U

′ so that we have a commutative diagram,

V ′ U

V U

where the vertical arrows are étale. Now pick u, v, u′, v′ appropriately, then we have
ev/u = ev′/vev/u = ev′/u′eu′/u = ev′/u′ . ⭔

Definition 1.1.12 Let f be as above, the ramification locus Rf is the set of closed
points p ∈ C such that ep/f(p) > 1. The branch locus is the image of Rf inside
D. We denote by ef the set of multiplicities ep/f(p) for p ∈ Rf . A map f is called
unramified if Rf is empty. We say that f is tamely ramified at p if the characteristic
of k does not divide ep/f(p). The map f is tamely ramified if it is tamely ramified at
every point.

Example 1.1.13 Let G be a finite group acting faithfully on a curve C . Consider the
coarse spacemorphismπ : [C/G] → C/G from the stack quotient to the schematic
quotient. Assume that the orders of the inertia groupsGi(x) are not divisible by the
characteristic of k for any closed point x ∈ C . Then for any closed point y ∈ [C/G],
with z := π(y), we have that the ramification index ey/z is equal to the order of the
inertia groupGi(x) for a point x lying above y.

Proof. SinceC/G is already a schemewe can take the identitymap as its étale cover. The
map C → [C/G] is étale, so we may pick a point x in C that maps to y and compute
ex/z of the mapC → C/G. Now the result is classic. ⭔

Theorem 1.1.14 Let f : C → D be an unramified map of tame stacky curves, then
f is representable.

Proof. Let U → D be an étale cover forD by a scheme, then C×D U → U is also un-
ramified, so we may assume thatD is a scheme. Let [V/G] → C be as in the local form
of Theorem 1.1.7. The map [V/G] → C → D is unramified and factors through the
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1 Fundamentals of Stacky Curves

coarse space V/G. Since ramification indices are multiplicative in compositions themap
[V/G] → V/G is unramified. This means that G acts freely on V by Example 1.1.13,
hence [V/G] = V/G. This means that the coarse space mapX → X is étale locally an
isomorphism, soX is a scheme. ⭔

Theorem 1.1.15 Let f : C → D be an unramified map of tame stacky curves that
induces an isomorphism of coarse spacesC ' D, then f is an isomorphism.

Proof. Since being an isomorphism is étale local we can assumeD = [V/G] andD =
V/G for a curveV and finite groupG. Since f is unramified it is representable, soV ′ :=
C×D V is a scheme. Because V ′ → C is finite étale, V ′ is also a curve. We have open
subschemesU ⊂ C andU ′ ⊂ D and we can take their intersectionU ∩U ′ ⊂ C ' D
in the coarse spaces. NowU ∩U ′ is an open subscheme of bothC andD and f restricts
to an isomorphism on this open subscheme. It follows that the morphism V ′ → V
between regular curves is birational and a bijection on points, hence an isomorphism.
Consequently f is an isomorphism. ⭔

Definition 1.1.16 LetC be a stacky curve. AWeil divisorD onC is a finite formal sum∑
Z nZZ of reduced closed substacksZ of codimension 1 of C. If all the nZ ≥ 0we

callD effective.

The reduced closed substacks of codimension 1 of C are in one to one correspondence
with the reduced closed subschemes of the coarse space C , hence they are in one to
one correspondence with the closed points of both C andC . When p is stacky point the
associated closed substack is precisely the residual gerbe Gp of p. This is the motivation
for the following definition.

Definition 1.1.17 Let p be a stacky point of order ep on a stacky curve. We define 1
ep
p

to be the Weil divisor Gp. This lets us write a Weil divisor as a formal sum of closed
points with coefficients inQ, namely we define

∑
p
np

ep
p :=

∑
Gp
npGp.

Where there are Weil divisors there are Cartier divisors.

Definition 1.1.18 Let C be a stacky curve. An effective Cartier divisor D on C is a
non-zero mapD : C → [A1/Gm] i.e. a line bundleL on C together with a non-zero
section s ofL.

Note that one can similarly define a possibly non-effective Cartier divisor to be a map
to [P1/Gm]. This definition is more familiar then it might look on first glance, namely
the isomorphism classes of maps into [A1/Gm] are nothing more then elements of
H0(O/O×). Similarly maps into [P1/Gm] are parametrized byH0(M×/O×).
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1 Fundamentals of Stacky Curves

Definition 1.1.19 Let Z ⊂ C be a closed substack, we define the ideal sheaf

OC(−Z) ⊂ OC

on étale covers of C as follows. Let f : U → C be étale, then

OC(−Z)|U = OU (−Z ×C U) ⊂ OU .

To an effective Weil divisorD we can associated the ideal sheaf

O(−D) :=
⊗
p

O(− 1

ep
p)⊗np ⊂ OC

and the effective Cartier divisor (OC(D), sD) whereOC(D) = Hom(OC(−D),OC)
and sD is corresponds to the dual of the inclusion mapOC(−D) → OC. This process

can be inverted by sending (L, s) to
∑

p
vp(s)
ep

p. Here vp(s) is defined by considering

the inclusion i : Gp → C and setting vp(s) to be one less than the length of i−1L

considered as an i−1OC-module via i−1s : i−1OC → i−1L. To see that these two
operations are inverse to each other we can pass to an étale cover, where it follows from
the case of classical curves.

Definition 1.1.20 Let f : C → D be a non-constant map of stacky curves andD an
effective Cartier divisor onD. We define the pullback f∗D ofD to be the composition
C → D →

[
A1/Gm

]
.

The following proposition expresses the pullback of a divisor in terms ofWeil divisors and
ramification data.

Proposition 1.1.21 Let f : C 7→ D be a tamely ramified map of stacky curves and
q ∈ D with pre-images {pi} = f−1(q). We have f∗Gq =

∑
pi
epi/qGpi .

Proof. We first show the case where C = C is a scheme and f is étale. We then have
f∗Gq := (O(Gq ×D C), sGq×DC) =

∑
pi
pi.

For the general case we let u : U → D be an étale neighbourhood of q such that q has
a unique preimage q̃ and let V → U ×D C be an étale cover, so we have the following
diagram.

V

U ×D C U

C D

v

g

w u

f
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1 Fundamentals of Stacky Curves

We can now verify the equality by passing to the cover V , i.e. we have to show

v∗w∗f∗Gq = v∗w∗
∑
pi

epi/qGpi .

Note that v∗w∗f∗Gq = v∗g∗u∗Gq = (v ◦ g)∗q̃. Let rij be the preimages of the pi
under (v ◦ w), then by the first case v∗w∗∑

pi
epi/qGpi =

∑
rij
epi/qrij . Note that

the rij are exactly the preimages of q̃ under (v ◦ g) and epi/q = erij/q̃ . So we have
reduced to the case of classical curves, which is [15, Chapter 7, Exercise 2.3(b)] ⭔

We now go over the construction of root stacks, which should be viewed as “degree 1
covers” with specified ramification data. We will prove that all stacky curves are actually
root stacks over their coarse space in Theorem 1.1.32. For a more general treatment on
root stacks see [5]

Definition 1.1.22 Let C be a stacky curve, p a closed point and e > 1 a natural num-
ber not divisible by the characteristic of k. Consider the Cartier divisor (O(Gp), sp)
associated to p. The root stack e

√
p/C is defined as the fibre product of the diagram

e
√
p/C

[
A1
k/Gm

]
C

[
A1
k/Gm

]
,

ρ ∧e
(O(Gp),sp)

where the right arrow is induced by the e-th power maps on A1 and Gm and the
bottom arrow is induced by p. The topmap e

√
p/C →

[
A1/Gm

]
defines an effective

Cartier divisor (Tp, sp), which is called the tautological divisor. We refer toTp as the
tautological line bundle. The left arrow ρ : e

√
p/C → C is called the root morphism.

For a finite set of points p = (p1, . . . pn) andmultiplicities e = (e1, . . . en)we define
the iterated root stack

e

√
p/C := e1

√
p1/C×C

e2
√
p2/C×C · · · ×C

en
√
pn/C,

which comes with tautological Cartier divisors (Tpi , spi) for each i and an iterated

root morphism e

√
p/C → C.

Technically the root construction also allows us to root in non-reduced divisors, however
rooting in n ·D with degree e is the same as rooting inD with degree e/ gcd(n, e).

Since root stacks commute with pullback by construction, the following example explains
the local structure of root stacks.
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1 Fundamentals of Stacky Curves

Example 1.1.23 LetC = Spec(A) be an affine curve. Let x ∈ A be a section corre-
sponding to a point p = (x), we have

e
√
p/C ' [Spec(A[t]/(te − x))/µe],

where µe acts by multiplication on the variable t.

Proof. Since OC(p) ' OC the morphism C
p→ [A1/Gm] factors as C

x→ A1 →
[A1/Gm]. We first claim that X := A1 ×[A1/Gm] [A1/Gm] ' [A1/µe]. To see this
consider the diagram of Cartesian squares.

X
[
A1/Gm

]
A1

[
A1/Gm

]
Spec(k) BGm

∧e

It follows that X = Spec(k) ×BGm [A1/Gm] ' [A1/(ker∧e : Gm → Gm)] =
[A1/µe]. Now consider another commutative diagram of Cartesian squares.

Spec(A[t]/(te − x)) A1

e
√
p/C

[
A1/µe

] [
A1/Gm

]
C A1

[
A1/Gm

]
The action of µe on A1 pulls back to an action on Spec(A[t]/(te − x)) and e

√
p/C '

[Spec(A[t]/(te − x))/µe]. ⭔

Remark 1.1.24 In the case that we are rooting in a non-stacky point the example shows
that the Weil divisor associated to (Tp, sp) is supported on the single closed point lying
above p and has stabilizer µe. We abuse notation and the point lying above p will also
be called p, so that the corresponding divisor is denoted by 1

ep. By construction we have
π∗(O(p)) = O(1ep)

e, which motivates the “root” terminology.

Lemma 1.1.25 The root morphism ρ : e
√
p/C → C is an isomorphism away from

the rooted point.

Proof. Away from the rooted point the section sp does not vanish, so the restriction
C − {p} → [A1

k/Gm] factors through the open substack Spec(k) = [Gm/Gm] ⊂
[A1

k/Gm] and the restricted map e : [Gm/Gm] → [Gm/Gm] is the identity. ⭔
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1 Fundamentals of Stacky Curves

For completeness we will prove two lemmas on the regularity/smoothness properties of
branched coverings.

Lemma 1.1.26 LetA be a regular local ring with maximal idealm and k = A/m. Let
s ∈ A − 0 such that A/(s) is regular and e a positive integer invertible in A. Then
B := A[t]/(te − s) is regular.

Proof. We split up the proof into two cases. First assume s /∈ m, then we claim that
A → B is étale. Indeed ΩA/B = 〈dt|ete−1dt = 0〉 and ete−1 ∈ B× by assumption.
HenceΩA/B = 0.

Now assume that s ∈ m. We see thatm+ (t) is the unique maximal ideal ofB and we
compute

dimk
m+ (t)

(m+ (t))2
= dimk

m⊕ tA⊕ · · · ⊕ te−1A

(m2 + (s))⊕ tm⊕ t2A⊕ · · · ⊕ te−1A

= dimk
m

m2 + (s)
+ dimk A/m < dimk

m

m2
+ 1.

The final inequality follows as s ∈ m, but s /∈ m2, because A/(s) was assumed to be

regular. It follows that we must have dimk
m+(t)

(m+(t))2
= dimk m

m2 , soB is regular. ⭔

Lemma1.1.27 LetA be a smooth k-algebra, s ∈ A an irreducible element and e ≥ 2
an integer invertible in k. Let B = A[t]/(te − s). Then B is smooth if and only if
A/(s) is smooth.

Proof. First notice thatBt is smooth, since it is étale overAs. Any prime ofB containing
s also contains t so they are in bijection with the primes of B/(t, s) = A/(s). Let
p ⊂ B be such a prime and q the corresponding prime inA/(s).

Wemay assume thatA has a standard smooth presentation k[x1, . . . xn]/(f1, . . . , fc),
and writeB = k[x1, . . . xn, t]/(f1, . . . , fc, h), where h = te− s. IfA/(s) is smooth,
then by [19, Lemma 00TE], for any q, we can rename variables so that

det
[
∂fi
∂xj

∂s
∂xj

]
1≤i≤c,1≤j≤c+1

does not map to q. It then follows that

det
[
∂fi
∂xj

∂te−s
∂xj

]
1≤i≤c,1≤j≤c+1

does not map to p, soB is smooth at p for all p. (Note that ∂te−s
∂xj

= ∂s
∂xj

, so the deter-
minant does not have any t-terms.)

10
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1 Fundamentals of Stacky Curves

On the other hand assume thatA/(s) is not smooth. Then, again by [19, Lemma 00TE],
there is a prime q such that for every relabelling of the xi the determinant

det
[
∂fi
∂xj

∂s
∂xj

]
1≤i≤c,1≤j≤c+1

maps to q. It follows that if we want a relabelling on the level ofB we need to include t.
Now consider

det

[
∂fi
∂xj

∂te−s
∂xj

∂fi
∂t

∂te−s
∂t

]
1≤i,j≤c

= ete−1 det
[
∂fi
∂xj

]
1≤i,j≤c

,

where we use ∂fi
∂t = 0 and ∂te−s

∂t = ete−1. So we see also for relabellings containing t
the determinant lands in q. It follows thatB is not smooth at q. ⭔

Proposition 1.1.28 Let C be a stacky curve, p a closed point and e > 1 a natural
number not divisible by the characteristic of k. The root stack e

√
p/C is a stacky curve.

Moreover, e
√
p/C is smooth over k if and only if C and Gp are smooth over k.

Proof. The only non-trivial facts are that e
√
p/C is DM and that e

√
p/C is regular. By

Theorem 1.1.7 and Example 1.1.23 we can cover C by affine curves Spec(A) → C such
that Spec(A) ×C

e
√
p/C ' [Spec(B)/µe], where B = A[t]/(te − s) and s ∈ A

is a section corresponding to a reduced point. Since s is assumed to be reduced, B is
regular by Lemma1.1.26 and it follows that e

√
p/C is a regular DMstack. The smoothness

statement is immediate from Lemma 1.1.27. ⭔

The proposition shows that root stacks naturally give rise to regular but non-smooth
stacky curves, since over an imperfect base we can have closed points of a smooth curve
that are not smooth themselves.

Example 1.1.29 Let k = Fp(t) and consider the curve A1
k = Spec(k[x]), with the

point (−xp − t). Then e
√
p/A1 is the curve [Spec(k[x, y]/(xp + ye + t))/µe], so

it is singular at the point y = 0, x = t1/p by [22, Example 3].

Proposition 1.1.30 LetC be a curve and let p be a set of closed points together with

a set of multiplicities e and consider the root stackX := e

√
p/C . The root morphism

X → C is the coarse space morphism.

Proof. Let π : X → X be the coarse space morphism. By the universal property of
the coarse space X → C factors through a map X → C . We can check that this is
an isomorphism Zariski-locally. Take an affine open Spec(A) = U ⊂ C containing a
single of the p ∈ p. By Example 1.1.23 we have X×C U = [Spec(A[t]/(te − s))/µe]

11
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1 Fundamentals of Stacky Curves

andX ×C U = Spec(A[t]/(te − s)µe) = Spec(A) = U . SinceC can be covered by
affine opens of this typeX → C is an isomorphism. ⭔

Proposition 1.1.31 Let C be a stacky curve and p a closed point on C. The root mor-
phismX = e

√
p/C → C is ramified abovepwith degreee and it is universal (terminal)

with respect to this property.

Proof. The ramification at p can be computed using Example 1.1.23 and Example 1.1.13.
Let f : X → C be a map of stacky curves and q a point of X ramified with degree e
above p ∈ C, then (O( 1

eq
q), sq) defines a map to [A1

k/Gm] and f∗(OC(
1
ep
p), sp) =

(OX(
1
eq
q)⊗e, seq) by Proposition 1.1.21. Hence f factors through X by the universal

property of the fibre product. ⭔

Theorem 1.1.32 Let C be a tame stacky curve with coarse space π : C → C and let
Rπ be the ramification locus. Identifying the ramification locus with the branch locus
we have that C is canonically isomorphic to eπ

√
Rπ/C .

Proof. By the universal property of root stacks it follows that π factors via a map C →
eπ
√
Rπ/C . This map is unramified and induces an isomorphism of coarse spaces. By

Theorem 1.1.15 it is an isomorphism. ⭔

One immediate consequence of this important structure result is the following corollary.

Corollary 1.1.33 A stronger formof Theorem1.1.7 holds for tame stacky curves, where
we replace the étale morphism V → C by a Zariski neighbourhood of p. Moreover,
the groups appearing are cyclic groups µe.

We also obtain a somewhat mysterious characterisation of fixed points of finite group
actions on curves in positive characteristic.

Corollary 1.1.34 LetG be a finite group of order not divisible by the characteristic of
k acting on a smooth curve C . Then is for any fixed point x the residue field κ(x) is
separable over k.

Remark 1.1.35 In [20] the authors define a separably rooted smooth stacky curve to
be a smooth stacky curve such that the residue fields of the stacky points are separable
field extensions of the base. By Theorem 1.1.32 and Proposition 1.1.28 it follows that all
smooth stacky curves are separably rooted.

The root stack description also defines a canonical isomorphism from the residual gerbe
of a stacky point toBµe.

12



1 Fundamentals of Stacky Curves

Theorem 1.1.36 Consider the following commutative diagram.

Gp
e
√
p/C

[
A1/Gm

]
BGm

p C
[
A1/Gm

]
BGm

The outer square is a 2-Cartesian diagram. As a consequence the residual gerbe Gp

is naturally isomorphic to Bµe, where Bµe is considered as the kernel of the map
e : BGm → BGm.

Proof. By the universal property of the 2-fibre product we get amorphismGp → Bµe =
BGm ×BGm p. On the other hand the morphism Bµe → BGm factors through[
A1/Gm

]
, so again by the universal property of 2-fibre products the morphism in fact

factors via a morphismBµe → e
√
p/C . The image of this morphism is precisely p and

sinceBµe is reduced it follows that it factors through Gp. Summarizing we get a factori-
sation Gp → Bµe → Gp → e

√
p/C → BGm, showing that the natural morphism

Gp → Bµe is an isomorphism. ⭔

We end this section with a technical definition that will be used when we want to reduce
to the case of a stacky curve with a single stacky point.

Definition 1.1.37 Let C be a tame stacky curve. A coarsening f : C → C′ is a map to
a tame stacky curve C′ inducing an isomorphism on coarse spaces.

Theorem 1.1.38 Let π : C → C′ be a coarsening of tame stacky curves. Then C is
canonically isomorphic to eπ

√
Rπ/C′.

Proof. This follows immediately from applying Theorem 1.1.32 to C and C′. ⭔

Example 1.1.39 letC be a stacky curvewith coarse spaceπ : C → C and ramification
divisorRπ =

∑n
i=1 eipi. Set C0 = C and Ci =

ei
√
pi/Ci−1. Then Cn = C and the

maps ri : Ci → Ci−1 are all coarsenings such that π = r1 ◦ · · · ◦ rn−1 ◦ rn.

1.2 Sheaves on stacky curves

In this section we will develop the basic theory of coherent sheaves on stacky curves.
We start by giving technical results relating sheaves on a stacky curve to sheaves on the
coarse space. We then describe the discrete data of coherent sheaves and give several

13



1 Fundamentals of Stacky Curves

computational tools that use them. We classify the invertible bundles relative to the in-
vertible bundles on the coarse space and we describe torsion sheaves in terms of cyclic
quiver representations. We then compute the Grothendieck group of a stacky curve by
showing that a coherent sheaf has a torsion filtration and that a locally free sheaf has a
filtration by invertible sheaves. We end with a computation of the canonical sheaf of a
stacky curve.

The functors π∗ and π∗

We begin by giving an equivalent characterization of the tameness condition in terms of
coherent sheaves.

Theorem 1.2.1 Let C be a stacky curve with coarse space map π : C → C , then
C is tame if and only if the pushforward on the categories of quasi-coherent sheaves
π∗ : QCoh(C) → QCoh(C) is exact.

Proof. The forward implication is [2, Lemma 2.3.4]. The full equivalence is proven in [1,
Theorem 3.2]. ⭔

Proposition 1.2.2 LetC be a tame stacky curve with coarse spacemorphismπ : C →
C . The functor π∗ restricts to a functor of coherent sheaves Coh(C) → Coh(C) and
to a functor of vector bundlesVect(C) → Vect(C).

Proof. This is [2, Lemma 2.3.4]. ⭔

Proposition 1.2.3 LetCbe a tame stacky curve. The functorπ∗ : Coh(C) → Coh(C)
is exact.

Proof. The map e : [A1
k/Gm] → [A1

k/Gm] is faithfully flat, so by Theorem 1.1.32 the
map π is also faithfully flat. ⭔

These formal properties of π∗ are essential for our applications to coherent sheaves, so
from this point onwards all our stacky curves will be assumed to be tame unless stated
otherwise.

Theorem 1.2.4 Let π : C → C be a stacky curve and F a quasi-coherent sheaf on C.

1. The natural mapOC → π∗OC is an isomorphism.

2. The natural map HomC(OC, π
∗π∗F) → HomC(OC,F) is an isomorphism.

14
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3. There is a natural isomorphism HomC(OC , π∗F) → HomC(OC,F) and as a
consequenceH i(C,F) = H i(C, π∗F).

Proof.

1. Let U → C be étale then U ×C C → U is a coarse space morphism by Theo-
rem 1.1.6, so anymorphismU×C C → A1 factors uniquely through amorphism
U → A1.

2. There is an inverse given by sending a section s : OC → F to the composition

OC → π∗OC → π∗π∗OC → π∗π∗F.

3. We can compose a series of natural isomorphisms.

HomC(OC , π∗F) → HomC(π∗OC, π∗F) →
HomC(OC, π

∗π∗F) → HomC(OC,F).

By [17, Lemma 1.10] the functor π∗ sends injective sheaves to flasque sheaves, so
we may apply [19, Lemma 015M].

⭔

The optimistic interpretation of this theorem is that it is easy to compute sheaf cohomol-
ogy on stacky curves, in fact it is just as easy as computing sheaf cohomology on classical
curves. The pessimistic interpretation is that sheaf cohomology does not help us under-
stand anything about the stacky structure of either the curve or the sheaves. However,
the above theorem is very specific to the structure sheafOC, so there is no analogue for
Ext groups. In other words Ext groups do see stacky structure. Because of this we will
phrase our results in terms of Ext groups whenever possible.

Using the local form we can make the functors π∗ and π∗ very concrete.

Theorem1.2.5 LetV be a curve together with the action of a finite groupG, such that
[V/G] is a stacky curve. View a coherent sheaf on [V/G] as aG-equivariant sheaf F
on V . Then π∗F = FG is theG-invariant part of F. If F is a coherent sheaf on V/G
then π∗F is the pullback to V together with the trivial action.

Proof. This follows from the definitions. ⭔

Corollary 1.2.6 Let π : C → C be a stacky curve and let F be a coherent sheaf on
C . Then the canonical morphism F → π∗π

∗F is an isomorphism.

15
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Discrete Data

Classically coherent sheaves on curves contain two pieces of discrete data, the rank and
the degree. These discrete data uniquely determine a connected component of themod-
uli space of coherent sheaves. This reflects the fact that the Hilbert polynomial of a sheaf
on a curve is given by a linear polynomial and the Hilbert polynomial uniquely identifies
a connected component.

For stacky curves the situation is more subtle. Even though our Hilbert polynomials are
still linear, they longer identify a unique connected component of the moduli space. To
remedy this we we have to introduce more discrete data. It turns out that for different
applications it is convenient to consider different (but equivalent) discrete data.

Definition 1.2.7 Let C be a tame stacky curve and F a coherent sheaf on C. Let p be
a stacky point with multiplicity ep and ip : Gp ' Bµep → C be the inclusion of the
residual gerbe at p, where the isomorphism is the canonical one from Theorem 1.1.36.
Then the coherent sheaf i∗F onBµep definesZ/epZ-graded vector space, so i∗F '⊕

i∈Z/epZ k
mp,i

i , where ki is the vector space k in grade i.

The numbersmp,i are called themultiplicities of E at p. We take the convention that
0 ≤ i ≤ ep − 1 and define themultiplicity vector

mp(E) = mp := (mp,0, · · · ,mp,ep−1).

Finally the collection of all the multiplicity vectorsmp for every stacky point p is called
the multiplicities of F denoted bym(F) = m.

Alternatively we define the twisted degrees of F to be dp,i := degπ∗F ⊗OC(
1
ep
p).

We write dp(F) = dp := (dp,0, . . . , dp,ep−1) for the twisted degrees at p and finally
d = d(F) for the collection of all twisted multiplicities.

Example 1.2.8 Let C := e
√
p/C . The tautological sheaf Tp = OC(

1
ep) has multiplic-

ity vectormp = (0, 1, 0, . . . , 0).

Proof. The pullback of the tautological sheaf corresponds to the composition Bµe →
e
√
p/C →

[
A1/Gm

]
→ BGm, which is the inclusion map by Theorem 1.1.36. ⭔

Since pullback commutes with taking tensor products and ki ⊗ k1 = ki+1 we can see
that tensoring with the tautological sheaf acts as a shift operator on the multiplicities.

Example 1.2.9 Let C := e
√
p/C and let F be a coherent sheaf on C , then π∗F has

multiplicity vectormp = (n, 0, . . . , 0).

16
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Proof. We have a commutative diagram.

Gp C

Spec(k) C

i

ϕ π

i

So we have i∗π∗F = φ∗i
∗
F , so i∗π∗F is a trivial representation. ⭔

The above example actually classifies the coherent sheaves with “trivial” multiplicities.

Theorem1.2.10 LetC be a stacky curve andF a coherent sheaf onC, such thatmp =
(n, 0, . . . , 0) for every stacky point p, then the canonical morphism π∗π∗F → F is
an isomorphism.

Proof. Consider the local from Theorem 1.1.7.

[V/µe] C

V/µe C

f

π′ π

g

Where we now assume that µe is the stabilizer of a single point p ∈ V . By [17, Propo-
sition 1.5] we have f∗π∗π∗F = π′∗g∗π∗F = π′∗π′∗f

∗F, so we can check that the
canonical isomorphism is an isomorphism locally. View F as a µe-equivariant sheaf on
V , so thatF '

⊕
i∈Z/eZ Fi decomposes into eigensheaves. Then π∗π∗F = F0, so we

have to show that Fi = 0 for i 6= 0. We have a Cartesian square.

Spec(k) V

Bµe [V/G]

p

i

Showing that i∗F is the same as the fibre of F at p together with the µe action on this
fiber. Since i∗F is a trivial representation it follows that Fi = 0 for i 6= 0. ⭔

Corollary 1.2.11 Let C be a stacky curve and let L be a line bundle on C. For each
stacky point p of order ep, let ap be the unique number such that mp,ap 6= 0. We
have L ' π∗L ⊗

⊗
pO( 1

ep
p)⊗ap for a unique (up to isomorphism) line bundle L

onC .

17



1 Fundamentals of Stacky Curves

Proof. We can apply the above theorem toL⊗
⊗

pO( 1
ep
p)⊗−ap to see

π∗π∗

(
L⊗

⊗
p

O(
1

ep
p)⊗−ap

)
= L⊗

⊗
p

O(
1

ep
p)⊗−ap .

Now set L = π∗

(
L⊗

⊗
pO( 1

ep
p)⊗−ap

)
to get

π∗L⊗
⊗
p

O(
1

ep
p)⊗−ap = L.

Now let π∗L⊗
⊗

pO( 1
ep
p)⊗−ap ' π∗L′ ⊗

⊗
pO( 1

ep
p)⊗−ap , then π∗L ' π∗L′, so

L = π∗π
∗L ' π∗π

∗L′ = L′. ⭔

Corollary 1.2.12 Let π : C → C be a stacky curve with stacky points pi of order ei
for 1 ≤ i ≤ n. Denote by PicC the (set theoretic) Picard group of C. We have an
isomorphism of abelian groups

PicC ' PicC [OC(p1)/e1, . . . ,OC(pn)/en],

given byOC(pi)/ei 7→ OC(
1
ei
pi).

For completeness we also rephrase Corollary 1.2.11 in terms of Weil divisors.

Corollary 1.2.13 Let π : C → C be a stacky curve and p ∈ C be a stacky point of
order e. Form ∈ Z we have π∗(mp) = em

e p and π∗(
m
e p) = bme cp. Where bxc is

the floor of x, i.e. the largest integer n such that n ≤ x.

Proof. Let m = ae + b so that OC(
m
e p) = π∗OC(ap) ⊗ OC(

b
ep), it follows that

π∗OC(
m
e p) = OC(ap). ⭔

Another consequence is that we can compute the twisted degrees of line bundles.

Corollary 1.2.14 LetC := e
√
p/C . LetL = π∗L⊗OC(

i
ep) and d = degL. ThenL

has twisted degrees dp = (d, . . . d, d+1 . . . , d+1), where the first d+1 appears
in the (ep − i)-th position.

Proposition 1.2.15 Let 0 → E → F → G → 0 be a short exact sequence of locally
free sheaves on a stacky curve thenm(E) +m(G) = m(F).

Proof. This is immediate as the pullback functor to the residual gerbe Gp is exact on
locally free sheaves. ⭔

18
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The above proposition is false for general coherent sheaves. Consider for example a
short exact sequence of the form 0 → O(−Gp) → OC → T → 0. Then pulling back
to Gp we get the short exact sequence Ve−1 → V0 → i∗T → 0. The first arrow must
be the zero map, so we getmp(T) = mp(OC).

Proposition 1.2.16 Let 0 → E → F → G → 0 be a short exact sequence of
coherent sheavs on a stacky curve, then d(E) + d(G) = d(F).

Proof. This is immediate as tensoring with OC(
i
ep
p) is exact, π∗ is exact and deg is ad-

ditive in short exact sequences of coherent sheaves onC . ⭔

Locally Free Sheaves

Having classified the line bundles on stacky curves, we now show that every torsion-free
sheaf is a vector bundle (locally free) and that vector bundles are iterated extensions of
line bundles, as in the case of classical curves.

Definition 1.2.17 Let C be a stacky curve and E be a coherent sheaf on C. We define
the torsion subsheaf T ⊂ E to be the maximal subsheaf of E that is torsion. We say
that E is torsion-free if T = 0.

Theorem 1.2.18 LetC be a stacky curve andE be a torsion free sheaf, thenE is locally
free.

Proof. By Theorem 1.1.7 there is an étale cover f : U → C ofC by classical curves. Then
f∗E is a torsion free sheaf on a (disconnected) classical (regular) curve U , hence locally
free. ⭔

Note that locally free should be interpreted in the étale topology. For a stacky point p
there is no Zariski neighbourhood U of p such thatOC|U ' OC(

1
ep)|U , since they are

not isomorphic after pulling back to Gp.

Corollary 1.2.19 Let C be a stacky curve and E a coherent sheaf on C. We have a
short exact sequence

0 → T → E → F → 0,

where T is the torsion subsheaf of E and F is locally free.

Proof. Let q : E → E/T =: F be the quotient map and let T′ be the torsion subsheaf
of F, then q−1(T′) + T is torsion, so by maximality of T we have that q−1(T′) ⊂ T, so
T′ = 0. ⭔
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Lemma 1.2.20 LetF be a locally free sheaf of rank r on a stacky curveC. There exists
a sequence of surjective maps

F = E0 ↠ E1 ↠ · · · ↠ Er = 0,

such that Ei is locally free and Li := ker (Ei → Ei+1) is an invertible sheaf. More-
overm(F) =

∑r
i=1m(Li).

Proof. Let D >> 0 be a positive divisor of large degree on the coarse space C , then
π∗F(D) admits a non-zero section, so by Theorem1.2.4we get a non-zero sectionOC →
F ⊗ π∗OC(D). This gives rise to a subsheaf π∗OC(−D) → F. Let T be the torsion
sheaf of F/π∗OC(−D) and take the saturation

L0 = π∗OC(D) := kerF → (F/π∗OC(−D))/T

and set E1 := F/π∗OC(−D))/T. The saturation of an invertible sheaf is again an
invertible sheaf and E1 is locally free by construction. The vector bundle E1 has rank
r − 1, so iteratively applying this construction finishes the proof. ⭔

Corollary 1.2.21 LetF be a vector bundle, thenmp,i = dp,i−dp,i−1 for 1 ≤ i < ep
andmp,0 = rankF −

∑e−1
i=1 mp,i.

This corollary shows that for a vector bundle F we can recover (d(F ), rank(F)) from
(m(F), degπ∗F) and visa versa.

Torsion sheaves

Now thatwehave abasic understanding of vector bundleswemoveon to torsion sheaves.
We start by giving a very explicit description of torsion sheaves in terms of quiver repre-
sentations.

Definition 1.2.22 A k-quiver representation of the cyclic quiver with e vertices is
a Z/eZ-graded k-vector space together with a degree 1 map. More explicitly, it is
a collection of k-vector spaces Vi and linear maps ui : Vi → Vi+1 indexed by
i ∈ Z/eZ. See Figure 1.1 for a pictorial interpretation. A morphism of quiver rep-
resentations (Vi, ui) → (Wi, wi) is a collection of linear maps φi : Vi → Wi, such
that φi ◦ ui = wi ◦ φi.
A quiver representation is said to be nillpotent if the map is nilpotent.
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V0

Ve−1

V3

V2

V1

u0ue−1

u2

u1

u3

ue−2

Figure 1.1: A quiver representation of the cyclic quiver

Theorem 1.2.23 Let C be a stacky curve and p a stacky point of order e. There is an
equivalence of categories between the category of torsion sheaves supported on p
and the category of nilpotent κ(p)-quiver representations of the cyclic quiver with e
vertices.

Proof. Take a local form [V/µe] around the point p, such that theµe action fixes a unique
point q ∈ V . Now the category of torsion sheaves on C supported on p is equivalent to
the category of µe-equivariant torsion sheaves on V supported on q.

Let R := OV,q be the local ring at q with maximal ideal m, then there is an induced
µe-action on Spec(R), which induces a Z/eZ-gradingR =

⊕
i∈Z/eZRi. Since the µe

action fixes m it is a homogeneous ideal of R for this grading. It follows that there is a
homogeneous uniformizer u ∈ m, which using the conventions of Theorem 1.1.36 has
degree 1.

Now the category of µe-equivariant torsion sheaves supported on q is naturally equiva-
lent to the category of Z/eZ-graded torsion modules overR.

Next we notice that a torsion module over R is an R-moduleM such that unM = 0
for some n. This means that the category of torsionR-modules is equivalent to the cate-
gory of pairsM,n, whereM is anR/mn-module such that un−1M 6= 0 (together with
the pair (0,−∞).) and the morphisms are morphisms of R-modules after extending
scalars. Moreover R/mn inherits the grading of R and this equivalence respects grad-
ings. SinceR/mn = R̂/mn it follows that the category of graded torsion modules over
R is equivalent to the category of graded torsion modules over R̂. (Note that R̂ has a
natural grading, since we complete in a homogeneous ideal.)

Finally, by the Cohen structure theorem we know that R̂ ' κ(p)[[X]], where we can
chose X to map to u. Then the induced grading on κ(p)[[X]] is the one where Xi is
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homogeneous of degree i. A κ(p)[[X]]-module is torsion if and only if it is finite dimen-
sional as a κ(p) vector space. It follows that the category of graded torsion κ(p)[[X]]-
modules is equivalent to the category pairs (V, u), where V is a Z/eZ-graded κ(p)-
vector space andX : V → V is a degree 1map.

⭔

If we view non-stacky points as stacky points of order 1we recover the fact that a torsion
sheaf on a curve supported on single point corresponds to nilpotent representation of
the Jordan quiver.

Example 1.2.24 Let C be a stacky curve and p a stacky point of order e. Define the
torsion sheaf Ti via the exact sequence

0 → OC(−
i

e
p) → OC → Ti → 0,

for 1 ≤ i ≤ e. On the level of κ(p)[[u]]-modules this exact sequence becomes

0 → uiκ(p)[[u]] → κ(p)[[u]] → κ(p)[[u]]/〈ui〉 → 0.

We can now see that Ti corresponds to the quiver representation

V0 = V1 = · · ·Vi−1 = κ(q) and Vi = · · · = Ve−1 = 0

with the identity maps wherever possible. Except for Te, where the map Ve−1 → V0
is the zero map.

Remark 1.2.25 Chasing through all the definitions we can see that for a torsion sheaf
supported on a stacky point p we havemp,i = dp,i = dimVi.

Theorem 1.2.26 Let C be a stacky curve with a stacky point p of order e. The irre-
ducible torsion sheaves supported on p all fit in the exact sequence

0 → O(− i+ 1

e
p) → O(− i

e
p) → Ti → 0.

Proof. Let T be an irreducible torsion sheaf supported on p and consider the associated
quiver representationu : V → V . Sinceu is nilpotent itmust send somenonzero vector
vi ∈ Vi ⊂ V to 0. Then the we have a subrepresentation Ti ' ui : k · vi → 0, which
by irreducibility must be an isomorphism. Such a quiver representation corresponds to
the module uiκ(p)[[u]]/ui+1κ(p)[[u]]. ⭔
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The Grothendieck Group

Wewill combine the results of the previous sections to give a description of theGrothendieck
groupK(C) of coherent sheaves of on a tame stacky curve.

Theorem 1.2.27 Let C be a stacky curve with stacky points p. The maps det ◦ π∗,
rank andmp,i for i > 0 define an isomorphism of abelian groups

K(C) ' PicC ⊕Z⊕
⊕
p∈p

Zep−1

Proof. Since K(C) is generated by the classes of vector bundles we get natural maps
ι∗p : K(C) → K(Gp) ' Zep of for each p ∈ p. Note that these maps applied to a vec-
tor bundle are precisely the multiplicity vectors. The natural maps rankp : K(Gp) →
K(Spec(κ(p))) ' Z simply add the multiplicities together, which for a vector bun-
dle is nothing more than the rank. Clearly the ι∗p are surjective and the image of ⊕ι∗p :
K(C) →

⊕
p∈pK(Gp) is the sublattice where all the rankp agree. This sublattice can

then be identified with Z ⊕
⊕

p∈p Zep−1. The kernel of⊕ι∗p is generated by classes of
the form

[π∗L1 ⊗
⊗

OC(
ip
ep
p)]− [π∗L2 ⊗

⊗
OC(

ip
ep

)] ∼

[π∗L1]− [π∗L2] ∼ [π∗(L1 ⊗ L∨
2 )]− [OC].

It follows that we have a natural exact sequence

0 → PicC → K(C) →
⊕
p∈p

K(Gp),

where PicC → K(C) is given by L 7→ [π∗L]− [OC]. Finally the mapK(C) → PicC
given by det ◦ π∗ is a retraction of PicC → K(C), so the result follows. ⭔

We now define the determinant on the level of Grothendieck groups.

Definition 1.2.28 We define the determinant det to be the composition

K(C) → PicC ⊕
⊕
p∈p

Zep−1 → PicC,

where the first map is the projection and the second map is given by

(L,m) 7→ π∗L⊗
⊗

OC(
i

ep
p)⊗mp,i .
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Note that this map is indeed the unique group homomorphism K(C) → PicC which
sends the class of a line bundle [L] 7→ L.

Definition 1.2.29 Consider the composition

K(C)
det→ PicC

∼→ PicC [O(p1)/e1, . . . ,O(pn)/en] →
→ Z[d1/e1, . . . , dn/en] ⊂ Q,

where the last arrow is induced by the degree map on PicC . Let F be a coherent
sheaf on C. We define the degree degF to be the image under this composition.

Note that we allow fractional degrees, but the denominators of the fractions are bounded
in terms of the orders of the stacky points. This definition is chosen so that the pullback
from the coarse spaceπ∗ : K(C) → K(C) is degree preserving and in fact it is uniquely
defined by this property.

The rank of a vector bundle and its pushforward to the coarse space agree. The same is
not true for the degree, but the difference can be expressed in terms of themultiplicities.

Theorem 1.2.30 Let E be a locally free sheaf with multiplicitiesm. We have degE =
deg(π∗E) +

∑
p

1
ep

∑ep−1
i=0 imp,i.

Proof. Both sides of the equation are additive in short exact sequences, so we can reduce
to the case of invertible sheaves by Lemma 1.2.20. The case of line bundles follows from
Corollary 1.2.11. ⭔

The Cotangent sheaf

We end this section with a discussion on the cotangent sheaf of stacky curves. We will
start from a very abstract definition and then show that it can be very concretely de-
scribed. The abstract definition is not necessary for any of our results, so it should only
be viewed as motivation for the concrete description which we will actually use.

Definition 1.2.31 Let f : X → Y be a morphism of DM-stacks, following [11] we
define the cotangent sheaf ΩX/Y on the étale site ofX as follows. Let I be the kernel
of the multiplication morphismOX ⊗f−1OY

OX → OX, thenΩX/Y := I/I2.

We have two canonical exact sequences.

Theorem 1.2.32 Let X
f→ Y → Z be morphisms of DM-stacks. We have a short
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exact sequence
f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

IfOX is a locally free f−1OY-module then we can extend the sequence to

0 → f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

Proof. This follows from [11, (1.1.2.12)] and [11, (1.1.2.13)] ⭔

Theorem 1.2.33 Let i : Y → X be a closed immersion of DM-stacks with ideal sheaf
J. We have a canonical short exact sequence

J/J2 → i∗ΩX → ΩY → 0.

Proof. This follows from [11, (1.1.6.2)]. ⭔

Theorem 1.2.34 Let π : C → C be a smooth tame stacky curve with stacky points p.
We have

ΩC ' π∗ΩC ⊗
⊗
p∈p

O(
1

ep
p)⊗ep−1.

Proof. Let u : U → C be an étale atlas for C, thenU is smooth andΩU is a line bundle.
From Theorem 1.2.32 we get an exact sequence 0 → u∗ΩC → ΩU → ΩU/C = 0, so
ΩC is a line bundle.

Now apply Theorem 1.2.32 to the coarse space map π : C → C to get a short exact
sequence

π∗ΩC → ΩC → ΩC/C → 0.

The sequence extends to the left since π∗ΩC → ΩC is a map of line bundles that
is generically an isomorphism, hence injective. Since ΩC/C is supported on the stacky

points it follows from Corollary 1.2.11 thatΩC = π∗ΩC ⊗
⊗

p∈pOC(
1
ep
p)⊗np for non-

negative integers np.

To compute np we can take a local form around p.

U

[
U/µep

]
C

U/µep C

ϕ

π′

g

π

ff
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Denote the preimage of p under g also by p and let q be the unique point in U sitting
above p. Then pulling back along g we get

Ω[U/µep ]
= g∗ΩC = g∗π∗ΩC⊗O[U/µep ]

(
1

ep
p)⊗np = π′∗ΩU/µep

⊗O[U/µep ]
(
1

ep
p)⊗np .

Pulling back once more along φ we see

ΩU = φ∗Ω[U/µep ]
= (φ ◦ π′)∗ΩU/µep

⊗OU (q)
⊗np .

Now it follows from the ramification theory of classical curves that np = ep − 1. ⭔

To get a similar result for non-smooth curves one should work with the canonical sheaf
instead, but we will not develop the theory of canonical sheaves for DM-stacks here.

1.3 Projective stacky curves

In this section we develop a theory of projective stacky curves analogous to the theory
of classical projective curves. The main difference from the classical theory is that the
polarization of a stacky curve is not given by a line bundle, but by a higher rank vector
bundle called a generating sheaf. It is important to note that on a classical curve many
results do not depend on the choice of a polarizing line bundle, but in the stacky setting
this is no longer the case.

Definition 1.3.1 A projective stacky curve C is a smooth tame stacky curve with a
coarse spaceC that is projective.

Warning: The definition of a projective stack is more subtle, but for stacky curves this
naive definition is good enough. See [13] for the higher dimensional.

Proposition 1.3.2 Let C be a tame stacky curve with coarse space C . If C is proper,
then C is projective.

Proof. By Theorem 1.1.6, C is proper if and only if C is. Since a proper classical curve is
projective the result follows. ⭔

Definition 1.3.3 Let C be a projective stacky curve. We define the euler characteristic
χC := − degωC. We then define the genus gC via 2− 2gC = χC.

Since the canonical bundle can have rational degree, the Euler characteristic and genus
are not integers in general. This means for example that there is no cohomological de-
scription like h1(OC) = gC . One big motivation for this definition is that it satisfies an
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analogue of the Riemann-Hurwitz theorem. We first state the Riemann-Hurwitz theorem
applied to the coarse space map.

Theorem 1.3.4 Let π : C → C be a projective stacky curve with stacky points p. We
have

χC = χC −
∑
p∈p

ep − 1

ep
[κ(p) : k]

and

gC = gC +
1

2

∑
p∈p

ep − 1

ep
[κ(p) : k]

Proof. This follows immediately from Theorem 1.2.34. ⭔

Theorem 1.3.5 (Riemann-Hurwitz) Let f : C → D be a map of stacky curves tamely
ramified at the points pi with degree ei. We have

f∗ωD = ωC

⊗
i

O(Gpi)
ei−1.

And as a consequence

χC = (deg f) · χD −
∑
i

(ei − 1) deg(Gpi).

Proof. Let πC : C → C and πD : D → D be the coarse space morphisms and let
g : C → D be the map induced by πD ◦ f . By Theorem 1.2.34, we know the theorem
holds for πC and πD, by the classical Riemann-Hurwitz theorem the theorem holds for g
as well. An easy computation then shows that the theorem holds for f . ⭔

We give a short proof of the following well known result to highlight the effectiveness of
the genus.

Theorem 1.3.6 Letm 6= n by natural numbers not divisible by the characteristic of
k, then the football space F(m,n) is not the quotient of a classical curve by a finite
group.

Proof. Assume there is a classical curve C with an action of a finite group G such that
[C/G] ' F(m,n). Then C/G ' P1

k , so C is projective. The map C → F(m,n) is
unramified, so we can apply Riemann-Hurwitz to see

χC = |G|χF(m,n) = |G|(2− (
m− 1

m
+
n− 1

n
) = |G|m+ n

mn
.
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Since the right hand side is positive it follows that χC = 2. Now write d for the greatest
common divisor ofm and n so thatm = da and n = db for positive integers a and
b. Since G contains subgroups of orderm and n (the stabilizers of 0,∞ ∈ F(m,n))
we must have that dab divides |G|. Write |G| = xdab so the equation 2 = |G|m+n

mn
becomes2 = x(a+b), which implies thata = b = 1, but thenm = n is a contradiction.

⭔

We move on to proving Serre duality.

Theorem 1.3.7 (Serre Duality) Let E be a coherent sheaf on a projective stacky curve
C, we have a natural isomorphism

Exti(E, ωC) ' Ext1−i(OC,E)
∨,

for i = 0, 1.

Proof. We can reduce to the case that E is a line bundleL ' π∗L⊗
⊗

pO(
ip
ep
p). Now

we apply Serre duality onC to get

Exti(L, ωC) ' Exti
(
OC , L

∨ ⊗ ωC

)
' Ext1−i(OC , L)

∨ ' Ext1−i(OC,L)
∨.

The first isomorphism follows as

π∗(L
∨ ⊗ ωC) = L∨ ⊗ ωC ⊗ π∗

⊗
p

O(
ep − 1− ip

ep
p) = L∨ ⊗ ωC .

⭔

Remark 1.3.8 Even though in general we have π∗(F∨) 6= (π∗F)
∨ the above proof

shows that the Serre duals SC : F → HomC(F, ωC) and SC : F → HomC(F, ωC)
do commute with π∗, i.e. π∗ ◦ SC = SC ◦ π∗.
We now state the naive Riemann-Roch theorem for stacky curve. The reason we call this
the naive Riemann Roch theorem is that it does not involve any stacky structure of the
line bundles nor the curve itself.

Theorem 1.3.9 (Naive Riemann-Roch) Let C be a projective stacky curve, with coarse
space π : C → C . LetL be a line bundle on C. Then

h0(L)− h0(L∨ ⊗ ωC) = degπ∗L+ 1− gC

Proof. By the remark abovewe haveh0(L)−h0(L∨⊗ωC) = h0(π∗L)−h0((π∗L)∨⊗
ωC) = degπ∗L+ 1− gC . ⭔
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Generating sheaves

We will now spend some time defining generating sheaves, which will serve as a polar-
ization of a projective curve. Generating sheaves where first introduced in [18] in order
to embed quot schemes on tame DM stacks into quot schemes over their coarse space.

Definition 1.3.10 Let π : C → C be a stacky curve E a locally free sheaf on C.
Following [18] we define the functor FE : Coh C → CohC as

FE(F) := π∗Hom(E,F) = π∗(F ⊗ E∨).

And in the other directionGE : CohC → Coh C

GE(F ) := π∗(F )⊗ E.

Definition 1.3.11 The identity map π∗(Hom(E,F)) → π∗(Hom(E,F)) has a left
adjoint

π∗π∗(Hom(E,F)) → Hom(E,F),

which has a left adjoint

π∗π∗(Hom(E,F))⊗ E → F.

We denote this left adjoint of the left adjoint by θE : GE ◦ FE(F) → F.

Definition 1.3.12 Let E be a locally free sheaf on a stacky curve C. If θE(F) is surjec-
tive, then E is called a generator for F. If E is a generator for all coherent sheaves F
on C, then E is a generating sheaf for C.

It is not so obvious how to verify if a sheaf is generating directly, but the following condi-
tion is easy to check in practice.

Theorem 1.3.13 (Local condition of generation) Let C be a stacky curve with stacky
points p andE a locally free sheaf. ThenE is a generating sheaf if and only ifmp,j > 0
for every p ∈ p and 0 ≤ j ≤ ep − 1. In other words the representations ι∗E for
ι : Gp ↪→ C contain all irreducible representations of µep .

Proof. First off all the surjectivity of θE(F) can be checked locally, so we will assume that
C has a single stacky point p of order e.

Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of coherent sheaves. We get
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a commutative diagram.

0 F1 F2 F3 0

0 GE ◦ FE(F1) GE ◦ FE(F2) GE ◦ FE(F3) 0

θF1
θF2

θF3

Because of this we know that if two of the θE(Fi) are surjective, so is the third. Since
K0(C) is generated by line bundles it follows that we only have to show surjectivity for
line bundles. To verify if E generates the line bundlesL ' π∗L⊗

⊗
iO( j

ei
pi). We can

rewrite θL as

π∗π∗(Hom
(
E⊗O(

−j
e
p),OC

)
)⊗ π∗L⊗ E → π∗L⊗O(

j

e
p).

Tensoring both sides byL∨ and denoting E′ = E⊗O(−j
e p) we get the morphism

θL ⊗ L∨ : π∗π∗(Hom
(
E′,OC

)
)⊗ E′ → OC,

which is precisely θE′(OC). Since E
′ also satisfies the local condition of generation we

have reduced to the caseL = OC.

Now we apply Lemma 1.2.20 to E′ and get a chain of surjective maps E′ = E0 →
E1 → . . . → Er . From the local condition it follows that there exists a line bundle
L = ker(Ei → Ei+1) withmp(L) = (1, 0, . . . , 0), i.e. L ' π∗L for some L on C .
Now we have a commutative diagram.

π∗π∗L
∨ ⊗ L = OC

π∗π∗E
∨
i ⊗ L

π∗π∗E
∨
i ⊗ Ei

π∗π∗E
∨
i ⊗ E0

π∗π∗E
∨
0 ⊗ E0 OC

The top arrow is an isomorphism and it follows that all of the other horizontal arrows are
surjective. ⭔

The general case of the above theorem can be found in [18]. However there it is claimed
that for a stacky point ζ : Spec(k) → C with stabilizerGζ we have Spec(k) ×C C =
BGζ . This is of course not true, since π is ramified above ζ . We do have (Spec(k)×C

C)red = BGζ , which is enough to make their proofs work.
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Example 1.3.14 Let C be a stacky curve with stacky points pi of order ei, then E :=⊗
pi

⊕e−1
j=0 O( j

ei
pi)⊕

⊗
pi

⊕e−1
j=0 O(−j

ei
pi) is a generating sheaf, which we will call

the standard generating sheaf for C.

From the local condition it is immediate that the standard generating sheaf is indeed a
generating sheaf. The standard generating sheaf is definitely not very canonical, however
it plays a very special role from a computational perspective. Often formulas massively
simplify whenever we apply them to the standard generating sheaf.

We now give a notion of degree that is relative to a generating sheaf, it is this degree that
will show up in the stacky Riemann-Roch theorem.

Definition 1.3.15 Let C be a projective curve, E be a locally free sheaf F a coherent
sheaf. We define the E-degree

dE(F) = deg(π∗Hom(E,F)))− rankF degπ∗Hom(E,O).

Note that the E-degree is additive in short exact sequences in both entries. Moreover
dE(−) = dE⊗π∗L for any line bundleLon the coarse space. It follows fromLemma1.2.20
that the E-degree only depends on the multiplicities of E. We now give a notion of
“weights”, which is simply a repackaging of the multiplicities, that is useful for compu-
tations with E-degrees.

Definition 1.3.16 Let E be a locally free sheaf with multiplicitiesmp,j . We define the

weights of E to bewp,j = wp,j(E) :=
∑j

l=1 mp,l(E)

rankE , where j runs from 0 to ep − 1.

Note that by construction 0 = wp,0 ≤ wp,1 ≤ · · · ≤ wp,ep−1 ≤ 1. The inequalities
are strict if and only if E is a generating sheaf.

Example 1.3.17 Let E be the standard generating sheaf, thenwp,i =
i
ep

.

In fact we can find a locally free sheaf with arbitrary rational weights.

Example 1.3.18 Let C be a stacky curve and for each stacky point p letwp,i =
ap,i
dp

be
rational numbers with a common denominator dp, such that the numerators satisfy

0 = ap,0 ≤ ap,1 ≤ · · · ≤ ap,ep−1 ≤ di.

Set bp,i = ap,i − ap,i−1 for 0 < i ≤ ep − 1 and bp,0 = dp − ap,ep−1. The locally

free sheaf E :=
⊗

p

⊕ep−1
i=0 OC(

i
ep
p)⊕bp,i has weightswp,i.

The weights allow us to give a formula for the E-degree in terms of invariants defined on
the coarse space and multiplicities.
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Theorem 1.3.19 Let E be a locally free sheaf with weights wp,i and let F be a locally
free sheaf with multiplicitiesmp,i. We have

dE(F) = rankE deg(π∗F) + rankE
∑
p

e−1∑
i=0

mp,iwp,i.

In particular, when E is the standard generating sheaf dE(F)
rankE = degF, where F only

needs to be a coherent sheaf.

Proof. Note that all the terms of the formula are additive in short exact sequences of
vector bundles, for bothF and E, so we may assumeF and E are line bundles. The case
of line bundles is immediate from the description in Corollary 1.2.11. For the case of the
standard generating sheaf the result follows from Theorem 1.2.30 and the fact that the
formula dE(F) = rankE degF is additive in all short exact sequences for F. ⭔

Now we state a more refined version of the Riemann-Roch theorem.

Theorem 1.3.20 (Stacky Riemann-Roch) Let C be a projective curve E a locally free
sheaf F a coherent sheaf. We have

ext0(E,F)− ext1(E,F) = dE(F) + rank(F)
(
ext0(E,OC)− ext1(E,OC)

)
.

In particular when E is the standard generating sheaf we have

ext0(E,F)− ext1(E,F)
rankE

= degF + rank(F)(1− gC).

Proof. The proof is analogous to the classical case. Everything is additive in short exact
sequences, so we may assume F is a line bundle. Assume F = OC, then dE(OC) = 0,
so the formula holds. Assume the formula holds for a line bundleL and we have a non-
zero mapL → L′ then let T be the cokernel of this map, which is a torsion sheaf. From
the additivity of E-degrees we get dE(L

′)−dE(L) = dE(T). We also get the long exact
sequence

→ Ext0(E,L) → Ext0
(
E,L′)→ Ext0(E,T) →

→ Ext1(E,L) → Ext1
(
E,L′)→ Ext1(E,T) = 0.

The last ext group is0becauseExt1(E,T) = H1(π∗(T⊗E∨)) = 0. Alsoext0(E,T) =
h0(π∗(T ⊗ E∨)) = dE(T). Now taking the Euler characteristic of the long exact se-
quence we see that the formula also holds for L′. A completely analogous argument
works when we have a non-zero mapL′ → L.

Nowany line bundleL ' OC(D) for someWeil-divisorD. LetD+ be the positive part of
D. We have a non-zero mapOC → O(D+) and a non-zero mapOC(D) → OC(D+)
showing that the formula holds forL.
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Finally when E is the standard generating sheaf we already saw dE(F) = rankE degF
and by the naive Riemann-Roch theorem

ext0(E,OC)− ext1(E,OC) = deg(π∗E∨) + rankE(1− gC) =

− rankE
1

2

(∑
pi

ei − 1

ei

)
+ rankE(1− gC) = rankE(1− gC).

⭔

Hilbert polynomials and stability conditions

We will now explain how to define Hilbert polynomials for sheaves on stacky curves.

Definition 1.3.21 Let C → C be a projective stacky curve. We define a polarization
of C to be a pair (E,OC(1)), where E is a generating sheaf for C and OC(1) is a
polarizing line bundle forC . For a coherent sheafFwewriteF(m) := F⊗π∗OC(1).

In [7] it is explained how a generating sheaf together with a polarization of the coarse
space induces an embedding of the stacky curve into a twisted Grassmanian stack. The
twisted Grassmanians are simultaneous generalizations of weighted projective spaces
and Grassmanians. This justifies the calling the pair (E,OC(1)) a polarization.

Definition 1.3.22 Let π : C → C be a projective stacky curve with polarization
(E,OC(1)). Let F be a coherent sheaf on C. We define the E-Hilbert polynomial
of F to be

PE(F)(m) := χ(Hom(E,F ⊗ π∗OC(m))) = ext0(E,F(m))−ext1(E,F(m)).

We define the reducedE-Hilbert polynomial pE(F) to bePE(F) divided by its leading
coefficient.

From the stacky Riemann-Roch theorem it follows that

PE(F)(m) = rankF rankE degOC(1) ·m+ dE(F) + rankF · CE,

where CE is a constant that does not depend on F. It follows that we can completely
reconstruct theHilbert polynomial if we know the rank, degree andmultiplicities ofF. We
will see later that the connected components of the moduli space of coherent sheaves
are parametrized by Hilbert polynomials, so the rank, degree and multiplicities really are
the only discrete invariants.
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Definition 1.3.23 LetC be a stacky curvewith generating sheafE. LetF be a coherent
sheaf onC. We say thatF is (semi)stable if for every proper subsheafF′ ⊂ F we have
pE(F

′)
(
≤

)
pE. Define the slope ofF to beµE(F) :=

dEF
rankF . We say thatF isE-slope-

(semi)stable if for every proper subsheaf we have µE(F
′)

(
≤

)
µE(F).

It follows immediately from the Stacky Riemann-Roch theorem that slope-(semi)stability
and (semi)stability are equivalent.

1.4 Parabolic vector bundles

One important reason to study vector bundles on stacky curves is their close relation
to parabolic bundles. Parabolic bundles where originally considered by Seshadri to give
a generalization of the Narasimhan-Seshadri correspondence to the case of punctured
curves. In this section we start by recalling the basic concepts surrounding parabolic
bundles. The goal is then to give a dictionary between the parabolic language and the
stacky curve language.

Definition 1.4.1 ([16, Definition 1.5]) LetC be a classical curve and p a set of points of
C . A quasi-parabolic vector bundle F on (C, p) is a vector bundle F on C together
with filtrations F = F p

0 ⊃ F p
1 ⊃ . . . ⊃ F p

ep = F ⊗ OC(−p) for each p ∈ p. The
integer ep is called the length of the parabolic structure at p. The collection of quasi-
parabolic vector bundles of fixed length forms a category qpar

(
C, p, e

)
, where the

morphisms are given by morphism of the underlying vector bundles respecting the
filtration. Explicitly the morphisms are morphisms φ : F → G such that φ(F p

j ) ⊂
φ(Gp

j ) for all p, j.

Remark 1.4.2 Instead of a filtration at each point, it is equivalent to give at each point p
a flag of quotients of the fibre F |p = V p

0 ↠ V p
1 ↠ · · · ↠ V p

ep−1 ↠ V p
e = 0. To see

this send a filtration F• to V p
i = coker

(
F p
ep−i → F p

0

)
|p. To obtain a flag of injections

Fp =W0 ⊃W1 ⊃ · · ·Wep = 0 instead simply considerWi = ker(V0 ↠ Vep−i).

Note that, contrary to the classical definition, we do not require the inclusions of the
filtrations to be strict. One reason is that this gives much better categorical properties.
For example a parabolic subbundle is simply a subobject in the category qpar

(
C, p, e

)
,

whereas classically subbundles might have shorter length filtrations, as the length would
be bounded by the rank.

We now describe how to obtain a quasi-parabolic vector bundle from a vector bundle on
a stacky curve.
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Definition 1.4.3 Let π : C → C be a stacky curve with stacky points p of degree e.

We define a functor par : Vect(C) → qpar
(
C, p, e

)
as follows. Let F be a vector

bundle on C. Then par(F) is the vector bundle π∗F together with the filtrations

π∗F ⊃ π∗(F ⊗OC(−
1

ep
p)) ⊃ · · · ⊃ π∗(F ⊗OC(−

ep
ep
p)),

for each p ∈ p. A morphism f : F → G gets sent to par(f) := π∗f : π∗F → π∗G.

There is also an inverse functor, but it is much harder to define, so we will omit it here.

Theorem 1.4.4 ([4, Théorème 4]) The functor par defines an equivalence of cate-
gories.

We will now look at how the functor par interacts with multiplicities.

Definition 1.4.5 Let F be a quasi-parabolic bundle. We define the multiplicities

mp,i(F) := dim coker(Fi+1 → Fi)|p,

where 0 ≤ i < ep.

In the surjective flag picture we havemp,i = dimV p
ep−i−1−dimV p

ep−i or in the injective

picturemp,i = dimW p
i − dimW p

i+1.

Proposition 1.4.6 Let F be a vector bundle on a stacky curve C := e

√
p/C , with

multiplicitiesmp,i, then par(F) has multiplicitiesmp,i.

Proof. We see that themp,i(parF) is additive in short exact sequences, so it suffices to
show this for line bundles. Then for a line bundle L = π∗L ⊗

⊗
p∈pOC(

np

ep
p) we see

that the filtrations of par(L) are given by Lp
i = L for 0 ≤ i ≤ np and Lp

i = L(−p)
for np < i ≤ ep. This shows thatmp,np(par(L)) = 1 and the other multiplicities are
0 as required. ⭔

Nowwe will discuss the notion of weights and (semi)stability for quasi-parabolic bundles.

Definition 1.4.7 Let C be a classical curve and p a set of points of C . A parabolic
bundle on C is a quasi-parabolic bundle together with a set α of parabolic weights
αp,j ∈ R for p ∈ p and 0 ≤ j < ep, satisfying

0 ≤ αp,0 < · · · < αp,ep−1 < 1.
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Let (F, α) be a parabolic bundle, we define the parabolic degree pardeg(F, α) =

degF+
∑

p

∑ep−1
i=1 mp,i(F)αp,i and theparabolic slopeµ(F, α) = pardeg(F,α)

rk(F ) . We

say that a parabolic bundle (F, α) is (semi)stable if for every proper quasi-parabolic
subbundle F′ ⊂ F we have µ(F′, α)

(
≤

)
µ(F, α).

The functor par respects stability.

Theorem 1.4.8 Let F be a vector bundle on a stacky curve C := e

√
p/C stacky curve

C . Let E be a generating sheaf with weightswp,i, then F is E-(semi)stable if and only
if par(F) together with the parabolic weights αp,i = wp,i is a (semi)stable parabolic
bundle.

Proof. This follows immediately from the fact that degE(F) = pardeg(par(F), w),
which follows from combining Proposition 1.4.6 with Theorem 1.3.19. ⭔

Theorem 1.4.9 Let qpar
(
C, p, e

)α−(s)s ⊂ qpar
(
C, p, e

)
be the full subcategory of

bundles that are (semi)stable when endowed with the parablic weights α. Then there

exists a generating sheaf E on C = e

√
p/C , such that the category of (semi)stable

vector bundlesVect(C)E−(s)s is equivalent to qpar
(
C, p, e

)α−(s)s
.

Proof. By [16, Corollary 2.9] we can always perturb the weights α to be rational without
changing the notion of stability. Secondly we can shift the parabolic weights by a constant
without changing the notion of (semi)stability by [16, Remark 2.10], so we might as well
assume that αp,0 = 0. This means we can pick E as in Example 1.3.18. ⭔

We end this section with some comments on “strongly” parabolic homomorphisms and
Higgs fields.

Definition 1.4.10 Let F,G ∈ qpar
(
C, p, e

)
be quasi-parabolic bundles. We de-

fine a strongly parabolic morphism to be a morphism f : F → G, such that
f(F p

i ) ⊂ Gp
i+1 for every p, i. The set of strongly parabolic morphisms is denoted by

sHom(F,G).

LetD :=
∑

p∈p p be the parabolic divisor. A Higgs field on F is a strongly parabolic

parabolic morphism φ : F → F⊗ωC(D). (Here the tensor product should be done
term-wise on every term of the filtrations of F.)

The notion of a strongly parabolic morphisms might seem quite ad-hoc. In fact the only
reason that it shows up is that the “logarithmic” canonical sheaf ωC(D) has the wrong
parabolic structure. On the level of stacky curves this will be apparent.

36



1 Fundamentals of Stacky Curves

Theorem 1.4.11 LetC = e

√
p/C and letF,G ∈ Vect(C) be two vector bundles. We

have a natural isomorphism

φ : Hom

(
F,G⊗

⊗
p

OC(−
1

ep
p)

)
→ sHom(par(F), par(G)).

In particular we have a correspondence of Higgs fields

sHom(par(F), par(F)⊗ ωC(D)) = Hom(F,F ⊗ ωC).

Proof. Denote by ι the inclusion ι : G⊗
⊗

pOC(− 1
ep
p) ↪→ G. We define φ by sending

a morphism f : F → G ⊗
⊗

pOC(− 1
ep
p) to φ(f) := par(ι ◦ f). By definition this

defines a strongly parabolic morphism and clearlyφ is injective. To see that it is surjective
take any strongly parabolic morphism h : par(F) → par(G), by Theorem 1.4.4 it lifts
to a uniquemorphism h̃ : F → G. We need to show that h̃ factors through ι. To see this
consider the generating sheaf E =

⊕
p∈p
⊕ep−1

i=0 OC(
i
ep
p). The fact that h is strongly

parabolic ensures that FE(h̃) factors through FE(G⊗
⊗

pOC(− 1
ep
p)). Now consider

the following commutative diagram.

GEFE(F) GEFE(G⊗
⊗

pOC(− 1
ep
p) GEFE(G)

F G⊗
⊗

pOC(− 1
ep
p) G

GEFE(h̃)

h̃

This shows that the image of h̃ lies inside G⊗
⊗

pOC(− 1
ep
p). ⭔

The theorem above also explains why Serre duality [21, Proposition 3.7] for parabolic
bundles is perhaps not what we would expect naively. Namely we have

Ext1(par(F), par(G)) = Ext1(F,G) = Hom(G,F ⊗ ωC)
∨

= sHom(par(G), par(F)⊗ ωC(D))∨.

All the equivalences in this section are on the level of categories, but we will see in the
next chapter that they also hold on the level of moduli stacks.
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Chapter 2

Moduli Stacks

In this chapter we will introduce a variety of moduli stacks that are related to the study
of sheaves on stacky curves. We will give basic properties of these moduli stacks and the
morphisms between them. We end by upgrading the categorical result of the previous
chapter and show that moduli stacks of (semistable) parabolic bundles are isomorphic to
moduli stacks of (semistable) vector bundles on stacky curves.

Moduli of sheaves

We start with a big definition containing the main moduli problems that we will study.

Definition 2.0.1 Let C be a stacky curve. We denote by Coh(C) the stack of coherent
sheaves on C. Explicitly the objects over T → Spec(k) are flat families of sheaves
over T and a morphism from an object F/S to an object G/T is a pair (f, φ), where
f : S → T is an fppf morphism of schemes and φ : f∗G → F is an isomorphism of
coherent sheaves.

Wedenote byBun(C) andBunE-ss(C) the substacks of vector bundles andE-semistable
vector bundles respectively. For fixed rank and twisted degrees (n, d) we denote by

Cohn,d(C) ⊃ Bunn,d(C) ⊃ BunE-ssn,d (C)

the substacks with fixed invariants. We will drop C from the notation when it is clear
from context. When it is more natural we will sometimes refer to Bunn,d as Bunn,d,m.

Being torsion free is an open condition, so Bun ⊂ Coh is an open substack. By [17,
Corollary 4.16] BunE-ss ⊂ Coh is an open substack. By [18, Lemma 4.3] Cohn,d ⊂ Coh is
an open and closed substack and Coh is the disjoint union of the Cohn,d, running over all
the possible invariants. By [17, Corollary 2.27] Coh is an algebraic stack, locally of finite
presentation over k. It follows that all the stacks in the definition are algebraic and locally
of finite presentation.
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2 Moduli Stacks

Vector bundle stacks

Wewill now introduce a class of moduli stacks that admit the structure of a vector bundle
stack, the stackified notion of a vector bundle. The definition of a vector bundle stack first
appeared in [3].

Definition 2.0.2 A vector bundle stack over a stack X is a morphism V → X, such
that exists an smooth cover U → X and a two term complex of vector bundles
V0 → V1 on U and an isomorphism [V1/V0] ' V×X U . (Note that when we write
V1/V0 we secretly mean [V(V ∨

1 )/V(V ∨
0 )].)

The example that all our other examples will be built on is the following.

Definition 2.0.3 Denote by SES(C) the stack of short exact sequences of coherent
sheaves i.e. the objects over T are given by a triple E,F,G of coherent sheaves on
C× T , all flat over T together with a short exact sequence

0 → E → F → G → 0.

The morphisms are morphisms of short exact sequences.

Whenwe consider SES(C) as a stack over Coh(C)×Coh(C) via the forgetfulmap that for-
gets everything except for the outer two sheaves we get a different perspective of the ob-
jects. Namely for an object T → Coh(C)×Coh(C) corresponding to the pair of sheaves
(E,G) on C × T we see that (SES(C) ×Coh(C)×Coh(C) ×T )(T ) consists of short exact
sequences E′ → F′ → G′ together with isomorphisms E ' E′ and G ' G′. The mor-
phisms are morphisms of short exact sequences (E′ → F′ → G′) → (E′′ → F′′ →
G′′) that respect the isomorphisms on the outer terms. In other words the objects are
extensions and the morphisms are morphisms of extensions. This implies in particular
that the fibers of SES(C) → Coh(C)× Coh(C) are given by [Ext1(G,E)/ Ext0(G,E)].
This is why this stack is sometimes said to be the stack classifying extensions.

Theorem 2.0.4 The forgetful map p : SES(C) → Coh(C)× Coh(C), sending a short
exact sequence 0 → E → F → G → 0 to the pair (E,G) is a vector bundle stack.

Proof. Consider the open substack Ud ⊂ Coh(C) × Coh(C) consisting of pairs (E,G),
such that Hom(G,E)(d) has no higher cohomology. Clearly the Ud cover Coh(C) ×
Coh(C). Denote the projection Ud × C → Ud by p and the projection Ud × C →
C by q. Let (Euniv,Guniv) be the universal pair of sheaves on Ud × C and set Y :=
Hom(Guniv,Euniv). We have a short exact sequence 0 → Y → Y (d) → Q → 0,
whereQ is defined to be the quotient. We claim that SES(C)|Ud

' [p∗Q/p∗Y (d)].

First of all notice that Q is the twist of Y by the relative effective divisor defined by
OUd

→ q∗OC(d), hence flat over Ud. Applying Rp∗ to the short exact sequence we
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2 Moduli Stacks

get the long exact sequence

0 → R0p∗Y → R0p∗Y (d) → R0p∗Q→ R1p∗Y → R1p∗Y (d) → R1p∗Q→ 0.

From the definition of Ud it follows thatR1p∗Y (d) = 0 and hence alsoR1p∗Q = 0. It
follows that R0p∗Y (d) = p∗Y (d) and R0p∗Q = p∗Q. By the cohomology and base
change theorem [10, Theorem A] it follows that p∗Y (d) and p∗Qd are vector bundles.

Let T be an affine scheme and t : T → Ud an object (E,G), then by [8, Proposition 3.1]
the objects of ([p∗Q/p∗Y (d)]×Ud

T )(T ) are given by

H1(T, t∗
(
R0p∗Y (d) → R0p∗Q

)
) = t∗R1p∗Y = R1p′∗t

′∗Y = Ext1(G,E)

and the morphisms are given by H0(T, t∗
(
R0p∗Y (d) → R0p∗Q

)
) = Ext0(G,E).

By the discussion above we have SES(C)|Ud
' [p∗Q/p∗Y (d)]. ⭔

It follows that SES(C) is also an Artin stack, locally of finite presentation over Spec(k).
Remark 2.0.5 The forgetful map SES(C) → Coh(C)× Coh(C) also lets us define many
natural variants of SES(C) coming from the different substacks of Coh(C) defined be-
fore. For example we can define SES(n1,d1),(n2,d2)

(C) to be the fibre product

SES(n1,d1),(n2,d2)
(C) SES(C)

Cohn1,d1
(C)× Cohn2,d2

(C) Coh(C)× Coh(C).

In other words SES(n1,d1),(n2,d2)
(C) is the stack of short exact sequences, where we

specify the invariants of the first and last term. By construction theprojection toCohn1,d1
(C)×

Cohn2,d2
(C) is again a vector bundle stack.

Smoothness

Wewill study the smoothness of the stacks defined above using the tangent bundle stack.
We take the definition as in [14, Définition 17.13]

Definition 2.0.6 LetD := Spec(k[ε]) be the spectrumof the dual numbers, i.e. ε2 =
0. For a stack T we set T [ε] := T ×D. Denote the natural maps by ι : T → T [ε]
and ρ : T [ε] → T .

Let X be an algebraic stack, we define the tangent bundle TX by setting TX =
X(T [ε]). The tangent bundle comes with a natural projection TX → X and a zero
sectionX → TX induced by the maps ι and ρ respectively.

Let X → Y be a morphism of stacks, then there is a natural morphism TX → TY

and we define the relative tangent bundle to beTX ×TY
Y.
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2 Moduli Stacks

Classically smoothness is closely related to the tangent bundle being a vector bundle, this
generalises nicely to algebraic stacks when we consider vector bundle stacks in stead.

Proposition 2.0.7 LetX be a reduced algebraic stack locally of finite presentation over
an algebraically closed field k, then X is smooth if and only if TX is a vector bundle
stack.

Proof. Take a smooth atlass u : X → X. By the proof of [14, Théorème 17.16] we have

u∗TX ' [V(ΩX/X)/V(ΩX/k)]

Assume X is smooth, thenX → X andX → Spec(k) are smooth and we have that
ΩX/X andΩX/k are locally free, so this presentsTX as a quotient of vector bundles.

AssumeTX is a vector bundle stack, then so isu∗TX andrankV(ΩX/X)−rankV(ΩX/k)
is constant. SinceΩX/X is locally free it follows that rankV(ΩX/k) is constant, soX is
smooth. ⭔

We will now compute the tangent bundle of Coh explicitly.

Theorem2.0.8 The tangent bundleTCoh(C) parametrises short exact sequencesE →
Ẽ → E, where the outer two terms are explicitly identified. The morphisms are mor-
phisms of short exact sequences that respect the identification of the outer terms. In
other words, we have a 2-Cartesian square.

TCoh(C) SES(C)

Coh(C) Coh(C)× Coh(C)∆

It follows thatTCoh C is a vector bundle stack.

Proof. Let E ∈ TCoh(C)(T ), then E is a T [ε]-flat family of sheaves on C× T [ε]. We can
tensor E with the short exact sequence

εOT → OT [ϵ] → OT

ofOT [ϵ]-modules to get a short exact sequence

E⊗OT → E → E⊗OT

on C × T [ε]. Then we can push this forward along ρ to get a short exact sequence on
C× T .

Starting with a short exact sequence E → Ẽ → E on C × T we can take the inverse
image ρ−1(E → Ẽ → E), which is an exact sequence of ρ−1OT -modules. Now ρ−1Ẽ

obtains aOT [ϵ]-module structure by defining the action of ε asρ−1Ẽ → ρ−1E → ρ−1Ẽ.
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2 Moduli Stacks

We leave it to the reader to show that these two constructions give well defined functors
that are inverse to each other. ⭔

Corollary 2.0.9 The stack Coh(C) is smooth, hence so are

Coh(C), Bun(C), SES, Cohn,d, Bunn,d(C), BunE-ssn,d (C), SES(n1,d1),(n2,d2)
.

Moreover,
dim(Cohn,d(C)) = ext1(F,F)− ext0(F,F),

for any F ∈ Cohn,d,m(C)(k) and

dim(SES(n1,d1),(n2,d2)
) = ext1(E,E)− ext0(E,E)

+ ext1(F,F)− ext0(F,F)

+ ext1(F,E)− ext0(F,E),

for any E,F ∈ Cohn1,d1
× Cohn2,d2

.

The following theoremwill show that our discrete invariants really are the discrete invari-
ants, i.e. they uniquely identify a connected component of Coh. Note that by the previous
corollary the connected components are the irreducible components.

Theorem 2.0.10 The stack Cohn,d is irreducible, hence so are Bunn,d and BunE-ssn,d ,
whenever they are non-empty.

Proof. First we show the result for Coh0,d. When d = (1, . . . , 1) consider the open
embededdings ιp,i : Coh0,1(C) → Coh0,1(C) given by T 7→ π∗T ⊗OC(

i
ep). The total

image of thesemaps is dense and since Coh0,1(C) is irreducible it follows that Coh0,1(C)
is irreducible. When d contains a zero degree dp,i = 0, we see that all the sheaves
must be supported at p. The corresponding quiver representations are automatically
nilpotent as the i-th vector space is 0. It follows that Coh0,d is simply an affine space
modulo an algebraic group, hence irreducible. We now proceed by induction. Let d =
d′ + (1, . . . , 1), then there are maps

SES(0,d′),(0,(1,...,1)) Coh0,d

Coh0,d′ × Coh0,(1,...,1)

The vertical arrow is a vector bundle stack, so by induction SES(0,d′),(0,(1,...,1)) is irre-
ducible. The horizontal arrow is surjective, so Coh0,d is irreducible.
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2 Moduli Stacks

We now proceed by induction on the rank. Consider the maps,

SES′ Cohn,d

Cohn−1,d′−i× Bun1,i

where SES′ is the stack of short exact sequences of the form π∗L → F → G, where
L ∈ Bun1,i and G ∈ Cohn−1,d′−i. The vertical arrow is again a vector bundle stack, so
SES′ is irreducible by induction. As i → −∞ the images of the horizontal maps define
a filtration by open substacks of Cohn,d, each of which is irreducible, hence Cohn,d is
irreducible. ⭔

Parabolic Moduli and Flag bundles

The goal of this section is to generalize the categorical equivalence between parabolic
bundles and bundles of stacky curves of Theorem 1.4.9 to an equivalence of stacks. As a
consequence we will see that the stack of vector bundles on a stacky curve is an iterated
flag bundle. We start by introducing the stack of quasi-parabolic vector bundles.

Definition 2.0.11 Let C be a smooth projective stacky curve and p a collection of non-
stacky points, e corresponding multiplicities andm a set of (parabolic) multiplicities.

We define the stack of quasi-parabolic bundles QParp,e,m(C) whose objects over T
are pairs (F,F•), where F is an object of Bun(C)(T ) and F• is a set of filtrations

F = F
p
0 ⊇ F

p
1 ⊇ · · · ⊇ Fp

e = F ⊗OC(−p× T ),

such thatFp
i /F

p
i+1 is flat over T and rank((Fp

i /F
p
i+1)|p) = mp,i. (The flatness con-

dition guarantees that this rank is constant along T .) The morphisms are the natural
ones. We let QPar

p,em

n,d,m′ be the substack where we fix the invariants of F.

Forgetting thequasi-parabolic structure gives a natural projectionQParp,e,m(C) → Bun(C).
When we consider a single parabolic point it is a “well known fact” that the forgetful map
is a fibration by flag varieties. We will make precise what this means and explain how to
generalize the result to the case with more then one parabolic point.

Definition 2.0.12 Let V be a vector bundle on a stack X of rank n and m ∈ Ne
≥0,

such that
∑

mi∈mmi = n. A flag of typem is a filtration by subbundles V = V0 ⊃
V1 ⊃ · · · ⊃ Ve = 0, such that the successive quotients Vi/Vi+1 are vector bundles
of rank(Vi/Vi+1) = mi.

We denote by Flagm(V) → X the flag bundel stack of typem associated to V. The
objects over T are given by (x, F ), where x is an object of X(T ) and F is a flag of
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2 Moduli Stacks

x∗E such that the succesive quotients are flat overT and the fiberwise flags have type
m.

Applying the definition to the most simple situation we recover the flag varieties.

Example 2.0.13 TakingX = Spec(k) andV = kn, the stack Flagm(kn) is a smooth

projective variety called a (partial) flag variety. In general we have Flagm
(
On

X

)
'

Flagm(kn)× X.

We can always take a Zariski local covering U → X that trivialises the vector bundle V.
Then we have Flagm(V)×X U ' Flagm(kn)× U . In other words flag bundle stacks
are always (zariski-local) fibrations by flag varieties.

Lemma 2.0.14 Let C be a stacky curve and p be a non-stacky point on C. Let Euniv be
the universal vector bundle on Bun(C)× C. There is an isomorphism

QParp,e,mp(C) ' Flagmp
(p∗Euniv)

as stacks over Bun(C).

Proof. Note that an object of Flagmp
(p∗Euniv)(T ) consist of a vector bundle F on

C× T , together with a flag of the vector bundle p∗F over T . Let φ : QParp,e,mp(C) →
Flagm(p∗Euniv) be defined by sending an object (F,F0 ⊇ F1 ⊇ · · · ⊇ Fe) to
(F, (F0/Fe)|p ⊇ (F1/Fe)|p ⊇ · · · ⊇ (Fe/Fe)|p = 0). There is an inverse ψ de-
fined by sending (F, F0 ⊇ F1 ⊇ · · · ⊇ Fe) to the filtration F0 ⊇ · · · ⊇ Fe, where Fi

is the kernel of F → (F0/Fi) ⊗ Op. We leave it to the reader to check that these two
functors are actually inverse to each other. ⭔

Theorem 2.0.15 Let C be a stacky curve, p a schematic point of C and let D :=
e
√
p/C. Let (n, d,m) be invariants for sheaves on D and set m′ = m \ mq . The

functor par can be extended to an isomorphism of stacks.

Bunn,d,m(D) QPar
e,p,mp

n,d,m′ (C)

Bunn,d,m′(C)

∼

Proof. By [17, Lemma 7.9] the functor par and its inverse send flat families to flat families
whenever C is a scheme, however the proofs still apply when C is a DM-stack. By the
previous chapter this functor preserves all the invariants. ⭔
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2 Moduli Stacks

Corollary 2.0.16 Let C be a stacky curve with stacky points p1, . . . pl and let π : C →
C be the coarse space map. Let (n, d,m) be discrete data on C. The induced map of
moduli stacks

π∗ : Bunn,d,m(C) → Bunn,d(C),

is an iterated flag bundle. Explicitely there is a factorisation

Bunn,d,m(C) = Bl → Bl−1 → · · · → B0 = Bunn,dC,

such that the mapsBi → Bi−1 are Zarisky locally of the formU × Flagmpi
(kn) →

U .

Proof. ViewC as an iterated root stack overC as in Example 1.1.39 and apply Lemma2.0.14
to Theorem 2.0.15 iteratively. ⭔

Corollary 2.0.17 Let C be a curve, p a set of points, e a set of lengths, m a set of
parabolic multiplicities and α parabolic weights. Consider the open substack

α−ss
QPar

e,p,m

n,d (C) ⊂ QPar
e,p,m

n,d (C)

of bundles that are semistable when endowed with the weights α. Then there exists

a generating sheaf E on C = e

√
p/C such that

α−ss
QPar

e,p,m

n,d (C) ' BunE-ssn,d,m(C).

Proof. Applying Theorem 2.0.15 iteratively we see QPar
e,p,m

n,d (C) ' Bunn,d,m(C), and
by Theorem 1.4.8 this isomorphism respects semistability. ⭔
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